14 research outputs found

    Scheduling Algorithm for Real-Time Embedded Control Systems using Arduino Board

    Get PDF
    The time taken for the scheduling task in a control system to reduce the traffic within the system is one of significant field of research in modern era. There are different control systems that require time scheduling such as elevator control system, traffic control system and train control system. Currently, there are unique control logic strategies adopting scheduling algorithm that are implemented in real time systems like earliest deadline first and ant colony optimization. At the same time, the disadvantages possessed by them are the exponential dip in the performance ratio due to over loading. Despite of all the available resources there are many issues faced such as congestion in traffic networks due to non-adaptive scheduling algorithms, etc., which led to several misfortunes and danger for human life. Hence an improved algorithm that increases the efficiency of the system is required to validate the processing time and the deadlines. Our research is focused on validating a proposed idea of using Arduino microcontroller to implement the different scheduling tasks and validate the efficiency of the algorithm to optimize the results of the system. This take cares of assigning the critical paths which priorities the tasks and focuses on reducing the scheduling time. This rapidly increases the processing speed and efficiency of the algorithm. We plan to use the Arduino board which has an inbuilt error detection algorithm that helps in checking whether the time scheduling is done effectively. In the initial phase of the project we develop and fabricate the hardware design using CAD design software packages like Solid Works. This is later employed with suitable environmental interfaces like, sensors and microcontrollers that can work in an adaptable environment as per requirements to validate the scheduling algorithm. The scheduling algorithm can also be used for controlling the current flow and power storage which will contribute a lot in the power consumption aspect. Graphical data interpretation of various algorithms from the past literature is observed and few selected ones are to be implemented in the experimental set up that is built as an initial proof of concept. By analyzing the results from the simulations carried out using the Altera FPGA board with VHDL and Arduino it is clear that we obtain better results using the Arduino board. Finally, to have an extensive study on different intelligent control logics that are used in the above mentioned control systems, we use the prototyped miniature model of an elevator system and a train control system to validate the different disk scheduling approaches like First Come-First Serve (FCFS), Elevator (SCAN) and ant colonization to solve the discrete combinational optimization of the scheduling logic. Initial validation of the system focuses on the effectiveness of using the ant colonization strategies to enhances the efficiency of the scheduling algorithm and optimize it for real time application

    Optimization of antireflection coating design using pc1d simulation for c − si solar cell application

    Get PDF
    Minimizing the photon losses by depositing an anti-reflection layer can increase the conversion efficiency of the solar cells. In this paper, the impact of anti-reflection coating (ARC) for enhancing the efficiency of silicon solar cells is presented. Initially, the refractive indices and reflectance of various ARC materials were computed numerically using the OPAL2 calculator. After which, the reflectance of SiO2, TiO2, SiNx with different refractive indices (n) were used for analyzing the performance of a silicon solar cells coated with these materials using PC1D simulator. SiNx and TiO2 as single-layer anti-reflection coating (SLARC) yielded a short circuit current density (Jsc ) of 38.4 mA/cm2 and 38.09 mA/cm2 respectively. Highest efficiency of 20.7% was obtained for the SiNx ARC layer with n = 2.15. With Double-layer anti-reflection coating (DLARC), the Jsc improved by ∼0.5 mA/cm2 for SiO2 /SiNx layer and hence the efficiency by 0.3%. Blue loss reduces significantly for the DLARC compared with SLARC and hence increase in Jsc by 1 mA/cm2 is observed. The Jsc values obtained is in good agreement with the reflectance values of the ARC layers. The solar cell with DLARC obtained from the study showed that improved conversion efficiency of 21.1% is obtained. Finally, it is essential to understand that the key parameters identified in this simulation study concerning the DLARC fabrication will make experimental validation faster and cheaper

    Optimization of effective doping concentration of emitter for ideal c-Si solar cell device with PC1D simulation

    Get PDF
    Increasing silicon solar cell efficiency plays a vital role in improving the dominant market share of photo-voltaic systems in the renewable energy sector. The performance of the solar cells can be evaluated by making a profound analysis on various effective parameters, such as the sheet resistance, doping concentration, thickness of the solar cell, arbitrary dopant profile, etc., using software simulation tools, such as PC1D. In this paper, we present the observations obtained from the evaluation carried out on the impact of sheet resistance on the solar cell’s parameters using PC1D software. After which, the EDNA2 simulation tool was used to analyse the emitter saturation current density for the chosen arbitrary dopant profile. Results indicated that the diffusion profile with low surface concentration and shallow junction depth can improve the blue response at the frontal side of the solar cell. The emitter saturation current density decreases from 66.52 to 36.82 fA/cm2 for the subsequent increase in sheet resistance. The blue response also increased from 89.6% to 97.5% with rise in sheet resistance. In addition, the short circuit density and open circuit voltage was also observed to be improved by 0.6 mA/cm2 and 3 mV for the sheet resistance value of 130 Ω/sq, which resulted in achieving the highest efficiency of 20.6%

    Simulation-Based Study on the Effect of Green Roofs on Summer Energy Performance in Melbourne

    No full text
    Green roofs are increasingly recognised as a crucial urban solution, addressing climate change, enhancing energy efficiency, and promoting sustainable architecture in densely populated areas. In this manuscript, the research study delves into the influence of green roofs on energy consumption, focusing on the Treasury Place building in Melbourne, Australia. The utilisation of DesignBuilder and EnergyPlus simulations was explored. Various green roof parameters such as the Leaf Area Index (LAI), plant height, soil moisture, and tree coverage were optimised and compared against base case scenarios. The key findings indicate an optimal LAI of 1.08 for maximum energy savings, with diminishing returns beyond an LAI of 2.5. The soil moisture content was most effective, around 50%, while a plant height of approximately 0.33 m optimised energy reduction. The introduction of 50% canopy tree coverage provided temperature regulation, but increased soil moisture due to trees and their influence on wind flow had an adverse energy impact. These results emphasise the necessity for precise green roof representation and parameter optimisation for maximum energy efficiency. This research offers essential insights for those in urban planning and building design, endorsing green roofs as a pivotal solution for sustainable urban environments

    A sustainable distributed building integrated photo-voltaic system architecture with a single radial movement optimization based MPPT controller

    Get PDF
    The solar photo-voltaic systems control architecture has a substantial influence over the cost, efficiency, and accuracy of maximum power point tracking under partial shading conditions. In this paper, a novel distributed architecture of a building integrated photo-voltaic system equipped with a single maximum power point tracking controller is presented in order to address the drawbacks associated with respect to cost, complexity and efficiency of the existing photo-voltaic system architectures. In addition, a radial movement optimization based maximum power point tracking control algorithm is designed, developed, and validated using the proposed system architecture under five different partial shading conditions. The inferences obtained from the validation results of the proposed distributed system architecture indicated that cost was reduced by 75% when compared to the commonly used decentralised systems. The proposed distributed building integrated photo-voltaic system architecture is also more efficient, robust, reliable, and accurate

    Optimization of Mono-Crystalline Silicon Solar Cell Devices Using PC1D Simulation

    No full text
    Expeditious urbanization and rapid industrialization have significantly influenced the rise of energy demand globally in the past two decades. Solar energy is considered a vital energy source that addresses this demand in a cost-effective and environmentally friendly manner. Improving solar cell efficiency is considered a prerequisite to reinforcing silicon solar cells’ growth in the energy market. In this study, the influence of various parameters like the thickness of the absorber or wafer, doping concentration, bulk resistivity, lifetime, and doping levels of the emitter and back surface field, along with the surface recombination velocity (front and back) on solar cell efficiency was investigated using PC1D simulation software. Inferences from the results indicated that the bulk resistivity of 1 Ω·cm; bulk lifetime of 2 ms; emitter (n+) doping concentration of 1×1020 cm−3 and shallow back surface field doping concentration of 1×1018 cm−3; surface recombination velocity maintained in the range of 102 and 103 cm/s obtained a solar cell efficiency of 19%. The Simulation study presented in this article allows faster, simpler, and easier impact analysis of the design considerations on the Si solar cell wafer fabrications with increased performance
    corecore